Яндекс Пого

Яндекс анонсирует собственную технологию прогнозирования

imageВчера в 12:30

Сегодня мы анонсируем новую технологию Метеум — теперь с её помощью Яндекс.Погода будет строить собственный прогноз погоды, а не полагаться только на данные партнёров, как это было раньше.

Причём прогноз будет рассчитываться отдельно для каждой точки, из которой вы его запрашиваете, и пересчитываться каждый раз, когда вы на него смотрите, чтобы быть максимально актуальным.

В этом посте я хочу рассказать немного о том, как в наше время устроен мир погодных моделей, чем наш подход отличается от обычных, почему мы решились строить собственный прогноз и почему верим, что у нас получится лучше, чем у всех остальных.

Мы построили собственный прогноз с использованием традиционной модели атмосферы и максимально подробной сеткой, но и постарались собрать все возможные источники данных об атмосферных условиях, статистику о том, как ведёт себя погода на деле, и применили к этим данным машинное обучение, чтобы уменьшить вероятность ошибок.

Сейчас в мире есть несколько основных моделей, по которым предсказывают погоду. Например, модель с открытым исходным кодом WRF, модель GFS, которые изначально являлись американской разработкой. Сейчас ее развитием занимается агентство NOAA.
Модель WRF поддерживается и развивается учеными по всему миру, однако и у нее есть официальная версия — её развитием и поддержкой занимается американский научный институт NCAR, находящийся в Болдере, Колорадо. Изначально WRF развивалась как две параллельные ветки — ARW и NMM, ныне упраздненная. Модели GFS и WRF имеют несколько разный вектор развития (GFS распространяет глобальные и ориентированные на США продукты). WRF в первую очередь локальная модель, которую можно настроить под определенную местность.

По своей сути WRF – это open source программа, написанная на Фортране (см. врезку) и отражающая текущее понимание учеными законов физики и динамики атмосферы и, соответственно, погоды. Как всякий уважающий себя представитель open source software, WRF не работает «из коробки». То есть, вероятно, большинству линуксоидов удастся ее запустить, но только после изрядного количества времени, потраченного на чтение мануалов и компиляцию. При этом качество предсказаний погоды с помощью сырой версии может неприятно удивить. WRF создана, чтобы описывать сложную динамическую систему – атмосферу Земли, и потому нуждается в аккуратной настройке.Лирическое отступление про Фортран
Понятно, что Фортран, наверное, не самый лучший выбор для создания больших систем с открытым исходным кодом. Но существуют две серьезные причины не переписывать WRF на другие языки. Первая – код, что называется, проверен временем: не одно поколение ученых внесло свой вклад в формирование физической модели. Кроме того, данный код широко поддерживается научными группами по всему миру. Вторая причина заключается в том, что для описания такой сложной системы, как окружающая нас среда, требуются изрядные вычислительные ресурсы. Современные же компиляторы, типа Intel Fortran, позволяют собрать исполняемые файлы таким образом, чтобы те выполнялись с максимальной производительностью.
Весь процесс работы модели можно разделить на две условные части: предсказание физики и предсказание динамики. Физические модули WRF отслеживают количество тепла, которое выделяется и поглощается в атмосфере, а также образование осадков в нужное время и в нужном месте. Динамика – это движение воздушных масс, роза ветров, формирование циклонов и прочее. За физику отвечает набор полуэмпирических моделей, по одной на тот или иной процесс, за динамику – параметризованная версия уравнения Эйлера.

На картинке показан срез расчетной сетки модели. Результаты расчетов температуры отображены цветом ячеек и являются в основном следствием физических процессов – нагрева и охлаждения. Стрелочки показывают перенос воздушных масс, то есть результат расчета динамики.

Уравнение Эйлера – это дифференциальное уравнение в частных производных. Понятно, что компьютер не может решать дифференциальные уравнения в частных производных без посторонней помощи. Помощь в данном случае состоит в разложении уравнений математической модели на конечно-разностные схемы. То есть, представляя производные в виде разностей, можно получить максимально правильное решение уравнения.

Сложность, однако, не только в том, чтобы как можно точнее приблизить численное решение к пока что не найденному аналитическому. Она еще и в том, чтобы адекватно параметризовать процессы, управляющие атмосферой извне. Солнечная радиация, тепловое излучение почвы, влияние парниковых газов, фазовые переходы водяного пара – вот неполный список всего того, что нужно учесть при попытках прогнозировать погоду.

Возможно, вам понравится
«Яндекс.Пробки»: Непогода не
«Яндекс.Пробки»: Непогода не ...
Погода, прогноз от Яндекс
Погода, прогноз от Яндекс ...
Прикол - Яндекс.Погода
Прикол - Яндекс.Погода
Яндекс.Погода для iPad
Яндекс.Погода для iPad
Похожие страницы